New triterpenoids from the leaves of *Photinia serrulata* Li-Bing Yang^{a,b} and Li-Xing Zhao^a*

^aThe Key Laboratory for Microbial Resources of the Ministry of Education, Laboratory for Conservation and Utilisation of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, P.R. China ^bDepartment of Pharmacy, Xi'an Medical University, Xi'an 710021, P.R. China

A new triterpenoid, 3β , 15α -dihydroxy-12-keto-9(11)-ursene, and three known analogues, were isolated from the leaves of *Photinia serrulata*. The structure of the new compound, including its relative configuration, was elucidated by spectroscopic analysis, especially by two dimensional NMR techniques.

Keywords: Photinia serrulata, triterpene, rosaceae, ku-ding-cha

Photinia serrulata (the family Rosaceae) is distributed throughout the East and South of China. Its young leaves are used as vegetables, and the mature leaves are used as 'ku-ding-cha' in some regions of China. Ku-ding-cha is generally consumed in southern China as a type of tea. The beverage is light green and the taste is very bitter giving rise to the Chinese name, ku-ding-cha, which means a tea having bitter taste.^{1,2} This tea is also used as a herbal medicine to treat arteriosclerosis and obesity.³

Previous phytochemical analysis has revealed that the leaf essential oil of *P. serrulata* exhibited cytotoxicity towards human cancer cell lines and possessed antioxidant activity.⁴ With the aim of isolating bioactive natural products from Chinese Medicine, we investigated the chemical constituents of *P. serrulata*. A new ursane triterpene (1), three known analogues, 3β -hydroxy-12-keto-9(11)-ursen-28,13 β -olide (2),^{5,6} tormentic acid (3),⁷ and ursolic acid (4), were isolated. The isolation and structure elucidation of triterpenoid are reported in this paper.

Compound 1 was obtained as amorphous powder with molecular formula $C_{30}H_{48}O_3$ which was determined by HRESIMS. The IR absorption at 3502, 1689 and 1642 cm⁻¹, indicated the presence of hydroxyl groups, carbonyl group, and double bond. ¹H NMR spectrum contained six tertiary methyl signals, two secondary methyls, one olefinic signal ($\delta_{\rm H}$ 6.25, s) and two oxymethine signals at $\delta_{\rm H}$ 4.54 and 3.49 (Table 1). The ¹³C NMR and DEPT spectra revealed a total of 30 carbon signals including eight methyls, seven methylenes, six methines including two oxygenated ones, two olefinic carbons ($\delta_{\rm C}$ 180.2 and 123.5), one α , β -unsaturated carbonyl ($\delta_{\rm C}$ 201.1), and five quaternary carbons (Table 1).

These NMR data together with the molecular formula suggested that 1 has five rings. Considering the structures of the known triterpenoids isolated from this plant, along with the characteristic two doublet methyl signals at $\delta_{\rm H}$ 1.03 (d, J = 6.5 Hz) and 0.82 (d, J = 6.5 Hz), respectively, and five unoxygenated quaternary carbon signals at $\delta_{\rm C}$ 39.9 (s), 47.3 (s), 40.7 (s), 47.1 (s), and 35.7 (s) due to C-4, 8, 10, 14 and 17, respectively. Compound 1 was tentatively assigned an ursane skeleton. This was confirmed by examination of 2D NMR data. The two oxymethines were ascribed to C-3 and C-15, respectively, on the basis of HMBC correlations of H₃-27 and H₃-28 with C-3, and of H₃-24 with C-8, C-13, C-14, and C-15. The presence of a α,β -unsaturated ketone at C-12 was determined by the couplings of H-11, H-13, and H-18 with C-12 in the HMBC spectrum.

The relative stereochemistry of the molecule was deduced from coupling constants (Table 1) and correlations observed in ROESY spectrum (Fig. 2). The β -orientation for the C-3 OH was suggested from the intense ROESY correlations of H-3 with H-1 α , H-5, and H₃-28. The *cis* coupling constant between H-13 and H-18 (J = 3.6 Hz) and ROESY cross-peaks of H-13 with H₃-23 and H₃-25 indicated the β -orientation of H-13 and H-18 in 1. Additionnally, the ROEs from H-15 to H-13, H₃-23 and H₃-25 indicated the β -orientation of H-15. Therefore, compound 1 was elucidated as 3β , 15 α -dihydroxy-12-keto-9(11)-ursene.

Compounds 1–3 were tested for cytotoxicity against A549 cells using the sulforhodamine B (SRB) method. However, they were completely inactive with IC₅₀ values of >100 μ M.

Table 1 ¹H and ¹³C NMR data of 1 at 500 MHz in pydrine-d₅^a

No.	δ _H <i>J</i> (Hz)	δ _C	No.	δ _H <i>J</i> (Hz)	δ_{C}
1α	1.30 (m)	37.1 (t)	16α	2.28 (t, 12.0)	39.8 (t)
1β	1.96 (m)		16β	1.47 (dd, 12.0, 4.8)	
2	1.86-1.94 (2H, m)	28.5 (t)	17		35.7 (s)
3	3.49 (dd, 12.0, 3.2)	77.2 (d)	18	2.38 (dd, 11.2, 3.6)	47.9 (d)
4		39.9 (s)	19	1.70 (m)	40.0 (d)
4 5	1.12 (brd, 11.2)	50.7 (d)	20	1.07 (overlapped)	39.7 (d)
6α	1.58 (m)	18.6 (t)	21α	1.36 (m)	31.9 (t)
6β	1.73 (m)		21β	1.24 (m)	
7α	2.54 (m)	36.9 (t)	22	1.38 (2H, m)	41.7 (t)
7β	2.03 (m)		23	1.05 (s)	29.5 (q)
8		47.3 (s)	24	1.49 (s)	14.6 (q)
9		180.2 (s)	25	1.38 (s)	25.3 (q)
10		40.7 (s)	26	1.18 (s)	24.9 (q)
11	6.25 (s)	123.5 (d)	27	1.04 (s)	16.6 (q)
12	Carolad Habria 💼 Hara	201.1 (s)	28	1.22 (s)	28.8 (q)
13	3.05 (d, 3.6)	49.0 (d)	29	1.03 (s)	20.8 (q)
14		47.1 (s)	30	0.82 (s)	21.2 (q)
15	4.54 (dd, 12.0, 4.8)	67.0 (d)		inder Standards In Constant	

^aThe assignments were based on ¹H–¹H COSY, HMQC, HMBC, and ROESY experiments.

* Correspondent. E-mail: lixing.zhao@yahoo.com

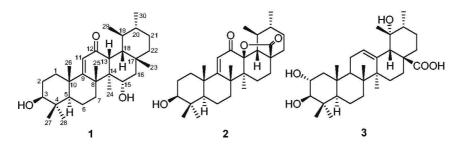


Fig. 1 Structures of compounds 1–3.

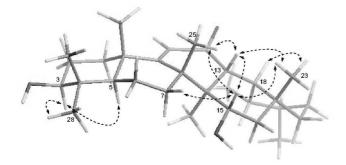


Fig. 2 Key ROESY correlations of 1.

Experimental

IR spectra were measured on a Bio-Rad FTS-135 spectrometer with KBr pellets. Optical rotations were determined on a Perkin–Elmer model 241 polarimeter. MS were recorded on a VG Auto spec-3000 spectrometer. 1D and 2D NMR spectra were measured on a Bruker DRX-500 instrument with TMS as internal standard. Column chromatography was performed with silica gel 60 (200–300 mesh, Merck), Sephadex LH-20 (Pharmacia), and reversed-phase C-18 silica gel (250 mesh, Merck). Pre-coated TLC sheets of silica gel 60 GF254 were used. Agilent 1100 series HPLC equipped with an Alltima C-18 column (4.6 \times 250 mm) was used for HPLC analysis and a semipreparative Alltima C-18 columns (9.4 \times 250 mm) were used in sample preparation.

Plant material

The leaves of *P. serruiata* were collected in Qinglin mountain, Shanxi Province, China and were identified by Jing Ling. Voucher specimens (CNY 060920) were deposited in Xi'an Medical University.

Extraction and isolation

The air-dried leaves (3.1 kg) of *P. Serruiata* were extracted with 95% ethanol $(10 \text{ l} \times 3, \text{ each } 2 \text{ days})$ at room temperature. The filtrate was

evaporated, and the resulting residue was partitioned between water and ethyl acetate. The ethyl acetate fraction (110 g of dry extract) was purified by column chromatography (1 kg of silica gel), chloroformacetone from 1:0 to 0:1), affording fractions A–F. After repeated column chromatography (SiO₂; gradient mixtures of chloroformmethanol), fraction B afforded compound 4 (280 mg) and subfraction B4 (790 mg). Subfractions B4 was subjected to Sephadex LH-20 column eluted with methanol to yield 3 fractions, B41-B43. B41 was finally purified by semipreparative HPLC to give compounds 1 (6.5 mg) and 2 (5.4 mg). Compound 3 was obtained from fraction C by RP-18 column chromatography eluted in a step gradient manner with methanol/water (from 40:60 to 100:0).

3β,15α-dihydroxy-12-keto-9(11)-ursene (1): $[α]^{23}_{D}$ + 15.9 (c 0.20, MeOH); IR (KBr) v_{max} 3502, 2945, 2870, 2854, 1689, 1642, 1592, 1466, 1377, 1046, 960 cm⁻¹; ¹H NMR (C₅D₅N, 500 MHz) and ¹³C NMR (C₅D₅N, 125 MHz) data, see Table 1; HRESIMS (positive ion) *m/z* 455.3524 (calcd for C₃₀H₄₉O₃ [M + H]⁺, 455.3525).

Received 25 July 2008; accepted 15 August 2008 Paper 08/0070 <u>doi: 10.3184/030823408X360337</u> Published online: 10 November 2008

References

- 1 K.M. Lau, Z.D. He, H. Dong, K.P. Fung and P.P.H. But, J. Ethnopharmacol., 2002, 83, 63.
- 2 O. Negishi, Y. Negishi, F. Yamaguchi and T. Sugahara, J. Agric. Food Chem., 2004, 52, 5513.
- 3 K. Nishimura, T. Fukuda, T. Miyase, H. Noguchi and X.M.A. Chen, J. Nat. Prod., 1999, 62, 1061.
- 4 J. Hou, T. Sun, J. Hu, S.Y. Chen, X.H. Cai and G.L. Zou, *Food Chem.*, 2007, **103**, 355.
- 5 Y.L. Song, Y.H. Wang, Q. Lu, J. Gao, M. Bi and Y.X. Cheng, *Molecules*, 2007, **12**, 2599.
- 6 Y.L. Song, Y.H. Wang, Q. Lu, H.J. Qiao and Y.X. Cheng, *Helv. Chim.* Acta, 2008, **91**, 665.
- 7 A. Villar, M. Payá, M.D. Hortigüela and D. Cortes, *Planta Med.*, 1986, 52, 43.
- 8 A. Numata, P.M. Yang, C. Takahashi, R. Fujiki, M. Nabae and E. Fujita, *Chem. Pharm. Bull.*, 1989, 37, 648.